THCV235 / THCV236 Evaluation Kit

SerDes Single Link Evaluation Board
Parts Number: THEVA235, THEVA236

1. General Description

THEVA235 and THEVA236 boards are designed to evaluate THCV235 and THCV236 for transmission of Video data between the host and display.
One high-speed lane can carry up to 32 bit data and 3bits of synchronizing signals at a pixel clock frequency from 6 MHz to 160 MHz with converting RGB444 to YCbCr422.
The chipset, which has one high-speed data lane, can transmit video data up to $1080 \mathrm{p} / 60 \mathrm{~Hz}$.
The maximum serial data rate is $4.00 \mathrm{Gbps} / \mathrm{lane}$.

3. Overview

Figure 1 THEVA235 and THEVA236 View

4. Power Supply Set Up

This chapter shows power supply condition.
Caution: Check if there is no power-GND short on below red trace before supplying any power.

VCC Power Supply to Each Board

Each evaluation board requires VCC power supply. Use "CON1" and "CON4" connector typically.

(a) THEVA235

(b) THEVA236

Figure 2 Power Supply for Evaluation Board
Power Supply from / to Connector
VCC power supply can be connected to each connector by using solder jumper.

THEVA235

W1: Connect the VCC power supply with pin\#13 and 14 of CON2.
W2: Connect the VCC power supply with pin\#1, 2 and 3 of Header 1.
W3: Connect the VCC power supply with pin\#18 and 19 of CON3.

Figure 3 THEVA235 Power Supply from / to Each Connector

THEVA236

W4: Connect the VCC power supply with pin\#1, 2 and 3 of Header 17.
W5: Connect the VCC power supply with pin\#13 and 14 of CON5
W6: Connect the VCC power supply with pin\#18 and 19 of CON6.

(a)THEVA236 (Top Side)

(b) THEVA236 (Bottom Side)

Figure 4 THEVA236 Power Supply from / to Each Connector

5. CML Line Input / Output Connector Select

CML line input / output connector can be selected by using 0Ω resistors.

1 mm Pitch Connector

Mount / unmount following 0Ω resistors to use 1 mm pitch connector.
Table 1 Mount / unmount resistors for using 1 mm pitch connector

	Mount	Unmount
THEVA235	R9, R10, R11, R12, R13, R14	R15, R16, R17, R18, R20, R21, R23, R24, R25,
R28, R31, R32		

(a)THEVA235 (Top Side)

(b)THEVA236 (Top Side)

Figure 5 Resistors Mounting for 1 mm Pitch Connector
0.5 mm Pitch Connector

Mount / unmount following 0Ω resistors to use 0.5 mm pitch connector.
Table 2 Mount / unmount resistors for using 0.5 mm pitch connector

	Mount	Unmount
THEVA235	R20, R21, R23, R24, R28, R32	R9, R10, R11, R12, R13, R14, R15, R16, R17,
	R18, R25, R31	

(a)THEVA235 (Bottom Side)

(b)THEVA236 (Bottom Side)

Figure 6 Resistors Mounting for 0.5 mm Pitch Connector

SMA connector
Mount / unmount following 0Ω resistors to use SMA connector.
*HTPDN and LOCKN signals don't have SMA connector input / output connection.

Table 3 Mount / unmount resistors for using SMA connector

	Mount	Unmount
THEVA235	R17, R18, R23, R24, R25, R28,	R9, R10, R11, R12, R13, R14,
	R31, R32	R15, R16, R20, R21

Figure 7 Resistors Mounting for SMA Connector

6. Function setting

Pin\#2 of each 3HEADER is connected to IC's setting pin. Each setting pin's high or low setting can set by connecting pin\#2 of 3HEADER and VCC or GND level. Setting pin is yellow area in Figure 9.
P3 and P6 of control pin use to control 2-wire serial I/F. P2 and P5 of control pin can select Pull-up or Open. Control pin is red area in Figure 9.

Figure 8 High / Low Setting Description with 3HEADER

Figure 9 Position of Function Setting pin and Control pin

Header setting description

Table 4 THEVA235 Function Setting Description

Silk	Pin Name	Function
PDN1	PDN1	Sub-Link power down control H: Normal Operation, L: Power Down
PDN0	PDN0	Main-Link power down control H: Normal Operation, L: Power Down
COL1	COL1/SD0	Color Space Converter and Data Width Setting(*1)(*2) When PDN1=H, this pin must be Open.
COL0	COL0/INT/GPIO2	Data Width Setting $\left({ }^{*} 1\right)(* 2)$ When PDN1=H, this pin must be Open.
HFSEL	HFSEL/TCMN	High Frequency mode select(*1) H: Enable, L: Disable When PDN1=H, this pin must be Open.
LFSEL	LFSEL	Low Frequency mode select H: Enable, L: Disable
MAINMODE	MAINMODE/TCMP	Main-Link Mode Setting(*1) H: Sync Free Mode, L: V-by-One ${ }^{\circledR}$ HS Mode When PDN1=H, this pin must be Open.
SUBMODE	HTPDN/SUBMODE	Sub-Link Mode Setting(*1) H: Low Speed Data Bridge Mode, L: 2-wire serial I/F Mode When PDN1=L, this pin must be Open. (*3)
MSSEL	LOCKN/MSSEL	Sub-Link Master/Slave Setting(*1) H: Sub-Link Master side, L: Sub-Link Slave side When PDN1=L, this pin must be Open.
SSEN	SSEN/GPIO0	Spread Spectrum Clock Setting(*1) H: Enable, L: Disable When PDN1=H, this pin must be Open.
PRE	PRE/SD1	Pre-Emphasis Level Select(*1) H: Enable, L: Disable When PDN1=H, this pin must be Open.
LAT/AIN1	LATEN/SD3/AIN1/GPIO4	Field BET Latch Select and Address Setting(*1) (*4) When Sub-Link Field BET Mode and MSSEL=H, this pin must be H. When PDN1=H and MSSEL=H (Sub-Link Slave side), this pin must be Open.
CML/AIN0	CMLDRV/SD2/AIN0/GPIO3	CML Output Drive Strength Select and Address Setting(*1) (*4) H: Normal, L: Weak When PDN1=H and MSSEL=H (Sub-Link Slave side), this pin must be Open.
BET	BET/GPIO1	Field BET Entry (*1) H: Field BET Entry, L: Normal Operation When PDN1=H, this pin must be Open.
RF	RF/BETOUT	Input clock triggering edge select $(* 1)$ H: Rising Edge, L: Falling Edge When Sub-Link Field BET Mode, this pin must be Open.

(*1)A pin function changes by operation mode. Carry out appropriate transact. (THCV235_THCV236_Rev.1.00_E.pdf and up)
(*2)Data Width Setting refers to data sheet for details.
(*3)HTPDN connection is option. Refer to data sheet for details.
(*4)Address Setting for 2-wire serial I/F

Table 5 THEVA236 Function Setting Description

Silk	Pin Name	Function
PDN1	PDN1	Sub-Link power down control H: Normal Operation, L: Power Down
PDN0	PDN0	Main-Link power down control H: Normal Operation, L: Power Down
COL1	COL1/SD0	Color Space Converter and Data Width Setting(*1)(*2) When PDN1=H, this pin must be Open.
COL0	COL0/INT/GPIO2	Data Width Setting(*1)(*2) When PDN1=H, this pin must be Open.
HFSEL	HFSEL/RCMN	High Frequency mode select(*1) H: Enable, L: Disable When PDN1=H, this pin must be Open.
LFSEL	LFSEL	Low Frequency mode select H: Enable, L: Disable
MAINMODE	MAINMODE/RCMP	Main-Link Mode Setting(*1) H: Sync Free Mode, L: V-by-One ${ }^{\circledR}$ HS Mode When PDN1=H, this pin must be Open.
SUBMODE	HTPDN/SUBMODE	Sub-Link Mode $\operatorname{Setting}(* 1)$ H: Low Speed Data Bridge Mode, L: 2-wire serial I/F Mode When PDN1=L, this pin must be Open. (*3)
MSSEL	LOCKN/MSSEL	Sub-Link Master/Slave Setting(*1) H: Sub-Link Master side, L: Sub-Link Slave side When PDN1=L, this pin must be Open.
OE	OE	Output Enable Control H: LVCMOS output enable, L: LVCMOS output disable
LAT/AIN1	LATEN/SD3/AIN1/GPIO0	Field BET Latch Select and Address Setting(*1) (*4) When Sub-Link Field BET Mode and MSSEL=H, this pin must be H. When PDN1=H and MSSEL=H (Sub-Link Slave side), this pin must be Open.
TTL/AIN0	TTLDRV/SD2/AIN0/GPIO1	CML Output Drive Strength Select and Address Setting(*1) (*4) H: Normal, L: Weak When PDN1=H and MSSEL=H (Sub-Link Slave side), this pin must be Open.
RXDEFSEL	RXDEFSEL	Internal Register Default Setting Select. H: For THCV235, L: For THCV231
OUTSEL	OUTSEL/SD1	Permanent Clock Output Control(*1) H: Enable, L: Disable When PDN1=H, this pin must be Open.
BET	BET	Field BET Entry H: Field BET Entry, L: Normal Operation
RF	RF/BETOUT	Input clock triggering edge select(*1) H: Rising Edge, L: Falling Edge When Sub-Link Field BET Mode, this pin must be Open.

(*1)A pin function changes by operation mode. Carry out appropriate control. (THCV235_THCV236_Rev.1.00_E.pdf and up)
(*2)Data Width Setting refers to data sheet for details.
(*3)HTPDN connection is option. Refer to data sheet for details
(*4)Address Setting for 2-wire serial I/F

Main-Link and Sub-Link are active
Mount(red line) / unmount(yellow line) following 0Ω resistors and capacitors to use Main-Link and Sub-Link.

	Mount	Unmount
THEVA235	C9, C10, C13, C14	R5(*1), R6(*1), R15, R16
THEVA236	C30, C31, C33, C34, R68(*1), R69(*1)	R86, R94

(*1) For control MSSEL and SUBMODE

(a) THEVA235 (Top Side)

(b) THEVA236 (Top Side)

Figure 10 Mounting resistors and capacitors when Main-Link and Sub-Link are active

If IC's pins are used as open-drain output, connect with pull-up resistors (e.g. $10 \mathrm{k} \Omega$) and connect P2 and P5 of header.

	Mount	Unmount
THEVA235	R27, R30, R34, R36, R38, R39, R41	R47, R48, R49, R50, R51, R52, R53
THEVA236	R111, R113, R116, R118, R120,	R128, R129, R130, R131, R132,
	R123, R126	R133, R134

Furthermore, operational (yellow area) / disconnect (red area) following header.

Figure 11 Operational / disconnect header when Main-Link and Sub-Link are active

Only Main-Link is active
Mount(red line) / unmount(yellow line) following 0Ω resistors and capacitors to use only Main-Link.

	Mount	Unmount
THEVA235	$\mathrm{C} 9, \mathrm{C} 10, \mathrm{R} 5(* 1), \mathrm{R} 6(* 1), \mathrm{R} 15(* 2), \mathrm{R} 16(* 2)$	$\mathrm{C} 13, \mathrm{C} 14$
THEVA236	$\mathrm{C} 30, \mathrm{C} 31, \mathrm{R} 86(* 2), \mathrm{R} 94(* 2)$	$\mathrm{C} 33, \mathrm{C} 34, \mathrm{R} 68(* 1), \mathrm{R} 69(* 1)$

(*1) For connect HTPDN and LOCKN.
(*2) Connect IC pin side, refer in below.

Figure 12 Mounting resistors and capacitors when only Main-Link is active

Furthermore, operational (yellow area) / disconnect (red area) following header.

(a) THEVA235 (Top Side)

(b) THEVA236 (Top Side)

Figure 13 Operational / disconnect header when only Main-Link is active

7. Clock Input from SMA Connector

THEVA235 can also choose the clock input from SMA connector by using 0Ω resistors. If you want to use SMA connector for clock input, Mount the 0Ω resistors on R22 and unmount on R19. This input function is to use Field BET operation in mainly.

THEVA235 (Top side)
Figure 14 Clock input from SMA connector

8. Status Indicate LED

The following show indicating status of each LED. (*1)

D1: VCC Power Supply Indicator for THEVA235
D2: LOCKN Status Indicator (*2)
D3: VCC Power Supply Indicator for THEVA236
(*1) When VCC is over 2.0V, LED indicator will be valid.
(*2) When only Main-Link is active, LOCKN indicator will be valid.

9. LOCKN Sharing and HTPDN Omission

LOCKN Sharing

LOCKN connection can be shared with CML trace when only Main-Link is active. Mount $1 \mathrm{k} \Omega$ resistors to share the LOCKN signal, and unmount the 0Ω resistors shown in Figure 15.

Figure 15 LOCKN Sharing

HTPDN Signal Omission

HTPDN signal can be omitted by using $1 \mathrm{k} \Omega$ resistor when only Main-Link is active. Mount $1 \mathrm{k} \Omega$ resistor to pull down the HTPDN signal at transmitter side, and unmount the 0Ω resistors shown in Figure 16. When the HTPDN omission using, HTPDN output from receiver side is open connection.

(a)THEVA235 (Top Side)

(c)THEVA235 (Bottom Side)

(b)THEVA236 (Top Side)

(d)THEVA236 (Bottom Side)

Figure 16 HTPDN Omission

10.Schematic

Figure 17 THEVA235 Schematic

Figure 18 THEVA236 Schematic

11. Bills of Materials

Table 6 THEVA235 BOM

Type	Value / Part No.	Package	Spec	Reference No.	Quantity	Note
Capacitor	10uF	2012	16V	C1, C2, C3, C4, C5, C12	6	-
Capacitor	0.14 F	1005	16 V	C6, C7, C8, C9, C10, C11, C13, C14, C15, C16, C17, C18	12	-
Connector	282836-2(NC)	5 mm pitch	2pin	CON1	1	-
Connector	52271-1469(NC)	1 mm pitch	14pin	CON2	1	-
Connector	CN-FFC(0.5)19PD(NC)	0.5 mm pitch	12pin	CON3	1	-
Connector	PCN10-48P-2.54DSA(NC)	2.54 mm pitch	48pin	Header1	1	-
Connector	SMA103-T16(NC)	1.6 mm	PCB End Jack	SMA1, SMA2, SMA3, SMA4, SMA5	5	-
Header	Header, 3X1	2.54 mm pitch	-	Header2, Header3, Header4, Header5, Header6, Header7, Header8, Header9, Header10, Header11, Header12, Header13, Header14, Header15, Header16	15	-
Header	Header, 2X1	2.54 mm pitch	-	P1	1	-
Header	Header, 7X2	2.54 mm pitch	-	P2, P3	2	-
IC	THCV235	QFN64	-	IC1	1	-
IC	SSM3K16FS	SSM	RON15 Ω	U1	1	-
Inductor	MPZ1608R471A	1608	1.2A	L1, L2, L3, L4	4	-
LED	SML-310MT	1608	Green	D1, D2	2	-
Resistor	150Ω	1005	0.1 W	R1, R4	2	-
Resistor	$10 \mathrm{k} \Omega$	1005	0.1W	R2, R3	2	-
Resistor	$0 \Omega(\mathrm{NC})$	1005	1A	R5, R6, R7, R15, R16, R17, R18, R20, R21, R22, R23, R24, R25, R28, R31, R32, R43, R45	18	-
Resistor	$1 \mathrm{k} \Omega(\mathrm{NC})$	1005	0.1W	R8	1	-
Resistor	0Ω	1005	1A	R9, R10, R11, R12, R13, R14, R19, R26, R29, R33, R35, R37, R40, R42, R44, R46	16	-
Resistor	$10 \mathrm{k} \Omega(\mathrm{NC})$	1005	0.1W	R27, R30, R34, R36, R38, R39, R41, R47, R48, R49, R50, R51, R52, $R 53$	14	-

Table 7 THEVA236 BOM

Type	Value / Part No.	Package	Spec	Reference No.	Quantity	Note
Capacitor	10uF	2012	16 V	C19, C20, C21, C22, C23, C29	6	-
Capacitor	0.1 uF	1005	16 V	C24, C25, C26, C27, C28, C30, C31, C32, C33, C34, C35	11	-
Connector	282836-2(NC)	5 mm pitch	2 pin	CON4	1	-
Connector	52271-1469(NC)	1 mm pitch	14pin	CON5	1	-
Connector	CN-FFC(0.5)19PD(NC)	0.5 mm pitch	12pin	CON6	1	-
Connector	PCN10-48P-2.54DSA(NC)	2.54 mm pitch	48pin	Header17	1	-
Connector	SMA103-T16(NC)	1.6 mm	PCB End Jack	SMA6, SMA7, SMA8, SMA9	4	-
Header	Header, 3X1	2.54 mm pitch	-	Header18, Header19, Header20, Header21, Header22, Header23, Header24, Header25, Header26, Header27, Header28, Header29, Header30, Header31, Header32, Header33	16	-
Header	Header, 2X1	2.54 mm pitch	-	P4	1	-
Header	Header, 7X2	2.54 mm pitch	-	P5, P6	2	-
IC	THCV236	QFN64	-	IC2	1	-
Inductor	MPZ1608R471A	1608	1.2A	L5, L6, L7	3	-
Inductor	MPZ1005S331ET000	1005	700 mA	L8	1	-
LED	SML-310MT	1608	Green	D3	1	-
Resistor	150Ω	1005	0.1 W	R54	1	-
Resistor	10Ω	1005	0.1W	R55, R56, R57, R58, R59, R60, R61, R62, R63, R64, R65, R66, R67, R70, R71, R72, R76, R79, R80, R82, R84, R85, R87, R88, R90, R92, R93, R95, R96, R97, R98, R99, R100, R101, R102, R103	36	-
Resistor	0Ω	1005	1A	R68, R69, R81, R83, R89, R91, R110, R112, R115, R117, R119, R122, R125, R136, R138	15	-
Resistor	$0 \Omega(\mathrm{NC})$	1005	1A	R74, R78, R86, R94, R104, R105, R106, R107, R108, R109, R114, R121, R124, R127, R135, R137, R231B	17	-
Resistor	$1 \mathrm{k} \Omega(\mathrm{NC})$	1005	0.1W	R75	1	-
Resistor	$10 \mathrm{k} \Omega(\mathrm{NC})$	1005	1A	R111, R113, R116, R118, R120, R123, R126, R128, R129, R130, R131, R132, R133, R134	14	-
Resistor	0Ω	1608	0.1 W	R200	1	-
Resistor	$10 \Omega(\mathrm{NC})$	1005	0.1W	R231A	1	-

12.Set Items

Table 8 Set Items

TYPE	Part No.
DC Connector	$282836-2$
FFC Connector for V-by-One ${ }^{\circledR}$ HS Link	$52271-1469$
FFC 14pin 1mm pitch for V-by-One ${ }^{\circledR}$ HS Link	$98267-0299$
Pin Header	-

It's possible to mount these parts on this board and use.

13. Notices and Requests

Please kindly read, understand and accept this "Notices and Requests" before using this product.

For the Material:

1. The product specifications described in this material are subject to change without prior notice.
2. The circuit diagrams described in this material are examples of the application which may not always apply to design of respective customers. THine Electronics, Inc. ("THine") is not responsible for possible errors and omissions in this material. Please note even if the errors or omissions should be found in this material, THine may not be able to correct them immediately.
3. This material contains THine's copyright, know-how or other proprietary. Copying or disclosing of the contents of this material to any third party without THine's prior permission is strictly prohibited.

For the Product:

1. This product is solely designed for evaluation purpose, and other purposes including mass production and distribution are not intended.
2. This product has been solely manufactured for electric design engineers but not for end-users.
3. This product is not radiation-tolerant product.
4. This product is presumed to be used for general electric device, not for applications which require extremely high-reliability/safety (including medical device concerned with critical care, aerospace device, or nuclear power control device). Also, when using this product for any device concerned with control and/or safety of transportation means, traffic signal device, or other various types of safety device, such use must be after applying appropriate measures to the product.
5. This product has been designed with the utmost care to accomplish the purpose of evaluation of IC products manufactured by THine Electronics, Inc. ("THine"); however, THine MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO ANY PERFORMANCE OR FUNCTION OF THIS PRODUCT IN ANY CIRCUMSTANCES.
6. This product has been manufactured with the utmost care in quality control and product reliability; however, there may be faults or defects with a low but fixed probability, as inevitable phenomenon concerned with semiconductor manufacturing processes. Therefore, customers are encouraged to have sufficiently redundant or error-preventive design applied to the use of the product so as not to have THine's product cause any social or public damage. Neither replacement nor failure analysis of the product is available in any case of defects with the product and/or the product's components.
7. Customers are asked, if required, to judge by themselves on whether this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Act.
8. Please Note that even if infringement of any third party's industrial ownership should occur by using this product, THine will be exempted from any responsibility unless it directly relates to the production process or functions of the product.
9. Developing, designing and manufacturing of customers' own products, equipment or system by using of this product is strictly prohibited in any way.

THine Electronics, Inc.

sales@thine.co.jp
https://www.thine.co.jp

